rangkaian mikroprosesor dengan pembangkit sinyal clock





1. Tujuan    [kembali]
 
- Mengerti prinsip kerja dari mikroprosesor 8086
- Dapat menggunakan mikroprosesor 8086 di dalam rangkaian dan membuat project dari mikroprosesor tersebut
 
 
2. Alat dan Bahan    [kembali]

a) IC 8086
 

 

b) Dioda

Dioda Penyearah In4002 1N4002 Rectifier Diode Do-41 1A 100V Rjc | Shopee  Indonesia 

 

c) Resistor

 

 d) Capasitor

 

 3. Dasar Teori    [kembali]

 a) IC 8086

8086 merupakan sebuah chip mikroprosesor 16-bit rancangan Intel pada tahun 1978 yang membangkitkan penggunaan arsitektur x86. Tidak lama kemudian, intel 8088 diperkenalkan dengan bus 8-bit external, yang memungkinkan penggunaan chipset yang murah. 

8086 dirancang berdasarkan intel 8080 dan intel 8085 dengan set register yang mirip, tetapi dikembangkan menjadi 16 bit. "Bus Interface Unit" memberikan rangkaian instruksi ke "Execution Unit" melalui sebuah prefetch queue 6 byte, jadi pemberian dan pelaksanaan dilakukan bersamaan- sebuah bentuk pipelining primitif (instruksi 8086 bervariasi dari 1 sampai 4 byte).

 

 


Catu daya dan sinyal frekuensi
Ini menggunakan suplai 5V DC pada VCC pin 40, dan menggunakan ground pada VSS pin 1 dan 20 untuk operasinya.

Sinyal jam
Sinyal jam disediakan melalui Pin-19. Ini memberikan waktu ke prosesor untuk operasi. Frekuensinya berbeda untuk versi yang berbeda, yaitu 5MHz, 8MHz dan 10MHz.

Alamat / bus data
AD0-AD15. Ini adalah 16 bus alamat / data. AD0-AD7 membawa data byte orde rendah dan AD8AD15 membawa data byte orde tinggi. Selama siklus clock pertama, ia membawa alamat 16-bit dan setelah itu ia membawa data 16-bit.

Alamat / status bus
A16-A19 / S3-S6. Ini adalah 4 bus alamat / status. Selama siklus clock pertama, ia membawa alamat 4-bit dan kemudian membawa sinyal status.

S7 / BHE
BHE adalah singkatan dari Bus High Enable. Ini tersedia di pin 34 dan digunakan untuk menunjukkan transfer data menggunakan bus data D8-D15. Sinyal ini rendah selama siklus jam pertama, setelah itu aktif.

Baca (RD)
Ini tersedia di pin 32 dan digunakan untuk membaca sinyal untuk operasi Baca.

Siap
Ini tersedia di pin 22. Ini adalah sinyal pengakuan dari perangkat I / O bahwa data ditransfer. Ini adalah sinyal tinggi aktif. Jika tinggi, ini menunjukkan bahwa perangkat siap mentransfer data. Ketika rendah, ini menunjukkan status tunggu.

SETEL ULANG
Ini tersedia di pin 21 dan digunakan untuk memulai kembali eksekusi. Ini menyebabkan prosesor segera menghentikan aktivitasnya saat ini. Sinyal ini aktif tinggi selama 4 siklus clock pertama untuk RESET mikroprosesor.

INTR
Ini tersedia di pin 18. Ini adalah sinyal permintaan interupsi, yang diambil sampelnya selama siklus clock terakhir dari setiap instruksi untuk menentukan apakah prosesor menganggap ini sebagai interupsi atau tidak.

NMI
Ini adalah singkatan dari non-maskable interrupt dan tersedia di pin 17. Ini adalah input edge triggered, yang menyebabkan permintaan interupsi ke mikroprosesor.

UJI
Sinyal ini seperti status menunggu dan tersedia di pin 23. Ketika sinyal ini tinggi, maka prosesor harus menunggu status IDLE, jika tidak eksekusi dilanjutkan.

MN / MX
Ini singkatan dari Minimum / Maximum dan tersedia di pin 33. Ini menunjukkan mode prosesor untuk beroperasi; bila tinggi, ia bekerja dalam mode minimum dan sebaliknya.

INTA
Ini adalah sinyal pengakuan interupsi dan id tersedia di pin 24. Ketika mikroprosesor menerima sinyal ini, ia mengakui interupsi.

ALE
Ini singkatan dari address enable latch dan tersedia di pin 25. Pulsa positif dihasilkan setiap kali prosesor memulai operasi apa pun. Sinyal ini menunjukkan ketersediaan alamat yang valid pada alamat / jalur data.

SARANG
Itu singkatan dari Data Enable dan tersedia di pin 26. Ini digunakan untuk mengaktifkan Transreceiver 8286. Transreceiver adalah perangkat yang digunakan untuk memisahkan data dari alamat / bus data.

DT / R
Ini adalah singkatan dari Data Transmit / Receive signal dan tersedia di pin 27. Ini menentukan arah aliran data melalui transreceiver. Ketika tinggi, data ditransmisikan keluar dan sebaliknya.

M / IO
Sinyal ini digunakan untuk membedakan antara memori dan operasi I / O. Ketika tinggi, ini menunjukkan operasi I / O dan ketika rendah menunjukkan operasi memori. Ini tersedia di pin 28.

WR
Ini singkatan dari sinyal tulis dan tersedia di pin 29. Ini digunakan untuk menulis data ke dalam memori atau perangkat output tergantung pada status sinyal M / IO.

HLDA
Ini adalah singkatan dari sinyal Hold Acknowledgement dan tersedia di pin 30. Sinyal ini mengakui sinyal HOLD.

MEMEGANG
Sinyal ini menunjukkan kepada prosesor bahwa perangkat eksternal meminta untuk mengakses bus alamat / data. Ini tersedia di pin 31.

QS1 dan QS0
Ini adalah sinyal status antrian dan tersedia di pin 24 dan 25. Sinyal ini memberikan status antrian instruksi. Kondisinya ditunjukkan pada tabel berikut



S0, S1, S2
Ini adalah sinyal status yang memberikan status operasi, yang digunakan oleh Pengontrol Bus 8288 untuk menghasilkan sinyal kontrol memori & I / O. Ini tersedia di pin 26, 27, dan 28. Berikut adalah tabel yang menunjukkan statusnya -

LOCK
Ketika sinyal ini aktif, ini menunjukkan kepada prosesor lain untuk tidak meminta CPU meninggalkan bus sistem. Ini diaktifkan menggunakan awalan LOCK pada instruksi apa pun dan tersedia di pin 29.

RQ / GT1 dan RQ / GT0
Ini adalah sinyal Request / Grant yang digunakan oleh prosesor lain yang meminta CPU untuk melepaskan bus sistem. Ketika sinyal diterima oleh CPU, kemudian mengirimkan pengakuan. RQ / GT0 memiliki prioritas lebih tinggi daripada RQ / GT1.

b) Dioda


Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.

gambar dioda dan komponennya 

 c) Resistor


 

Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika.

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :


Perhitungan untuk Resistor dengan 4 Gelang warna :

 


d) kapasitor

Berfungsi untuk menghilangkan riak yang tersisa setelah gelombang disearahkan oleh diode bridge.

Kapasitor [C] gambaran sederhananya terdiri dari dua keping sejajar yang memiliki luasan [A] dan dipisahkan dengan jarak yang sempit sejauh [d]. Seringkali kedua keping tersebut digulung menjadi silinder dengan sebuah insulator atau kertas sebagai pemisah kedua keping. Pada gambar rangkaian listrik, simbolnya dinotasikan dengan:

simbol kondensator [Simbol]

Berbagai tipe kapasitor, (kiri) keping sejajar, (tengah) silindris, (kanan) gambar beberapa contoh asli yang digunakan pada peralatan elektronik.

gambar kondensator[Sumber: Douglas C. Giancoli, 2005]

Perlu kamu ketahui bahwa walaupun memiliki fungsi yang hampir sama, namun baterai berbeda dengan kapasitor. Kapasitor berfungsi hanya sebagai penyimpan muatan listrik sementara, sedangkan baterai selain juga dapat menyimpan muatan listrik, baterai juga merupakan salah satu sumber tegangan listrik. Karena baterai perbedaan itu, baterai juga memiliki simbol yang berbeda pada rangkaian listrik. Simbol baterai dinotasikan dengan:

simbol baterai[Simbol baterai]

Contoh penggunaan kedua simbol tersebut pada rangkaian listrik:

simbol baterai rangkaian listrik

Kamu dapat mencari nilai kapasitas atau kapasitansi suatu kapasitor, yakni jumlah muatan listrik yang tersimpan. Untuk bentuk paling umum yaitu keping sejajar, persamaan kapasitansi dinotasikan dengan:

C = \frac{Q}{V}

Dimana:
C = kapasitansi (F, Farad) (1 Farad = 1 Coulomb/Volt)
Q = muatan listrik (Coulomb)
V = beda potensial (Volt)

Nilai kapasitansi tidak selalu bergantung pada nilai Q dan V. Besar nilai kapasitansi bergantung pada ukuran, bentuk dan posisi kedua keping serta jenis material pemisahnya (insulator). Nilai usaha dapat berupa positif atau negatif tergantung arah gaya terhadap perpindahannya. Untuk jenis keping sejajar dimana keping sejajar memiliki luasan [A] dan dipisahkan dengan jarak [d], dapat dinotasikan dengan rumus:

C = \epsilon \frac{A}{d}

Dimana:
A = luasan penampang keping (m2)
d = jarak antar keping (m)
\epsilon = permitivitas bahan penyekat (C^2/Nm^2)

Jika antara kedua keping hanya ada udara atau vakum (tidak terdapat bahan penyekat), maka nilai permitivitasnya dipakai \epsilon_0 = 8 \times 10^{-12} \: C^2/Nm^2.

Muatan sebelum disisipkan bahan penyekat (Q_0) sama dengan muatan setelah disisipkan bahan penyekat (Q_b), sesuai prinsip bahwa muatan bersifat kekal. Beda potensialnya dinotasikan dengan rumus:

Q_0 = Q_b

C_0V_0 = C_bV_b

Kapasitor menyimpan energi dalam bentuk medan listrik. Besar energi [W] yang tersimpan pada dapat dicari menggunakan rumus:

W = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV = \frac{1}{2}CV^2

Dimana:
W = jumlah energi yang tersimpan dalam kapasitor (Joule)

Rangkaian Kapasitor

Dua kapasitor atau lebih dapat disusun secara seri maupun paralel dalam satu rangkaian listrik. Rangkaian seri memiliki sifat-sifat yang berbeda dengan rangkaian paralel. Berikut diberikan tabel sifat-sifatnya pada rangkaian seri dan paralel.

susunan-rangkaian-kondensator

 

 4. Percobaan    [kembali]

a) gambar rangkaian





 

b) video simulasi



 

- prinsip kerja


    Rangkaian mikroprosesor akan meng-output-kan address sesuai address memori atau I-O yang ingin dituju. Untuk address rendah pada mikroprosesor 8086 multiplek dengan data. Untuk membedakan address atau data dibantu oleh sinyal kontrol ALE yang menandakan mikroprosesor meng-output-kan address bukan data dan sebaliknya mikroprosesor akan meng-output-kan sinyal kontrol DEN jika mikroprosesor mau melakukan transfer atau receive data ke memori atau I-O. Data di transfer atau di receive dapat diketahui dari sinyal kontrol yang di-output-kan oleh mikrorposesor yaitu DT/-R. Selain itu mikroprosesor juga meng-output-kan sinyal-sinyal kontrol seperti RD, WR, INT, DT/-R, dan IO/-M yang akan dipakai pada rangkaian aplikasi. 

 

d) Link Download

 

File HTML                               disini

File Rangkaian Simulasi          disini

Video Simulasi Rangkaian       disini

Datasheet 8086                        disini

No comments:

Post a Comment